login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330806
a(1) = 1; a(2) = 1; for n >= 3, a(n) = a(n-1) / gcd(a(n-1), n-1) + a(n-2) / gcd(a(n-2), n-2).
1
1, 1, 2, 3, 5, 4, 3, 5, 8, 13, 21, 34, 38, 55, 93, 86, 74, 117, 87, 100, 92, 97, 189, 286, 332, 475, 807, 744, 455, 641, 1096, 1737, 2833, 4570, 5118, 7403, 12521, 19924, 22483, 32445, 28972, 35461, 64433, 99894, 114380, 72823, 95699, 168522, 123786, 151873
OFFSET
1,3
COMMENTS
2 >= a(n) / a(n-1) > 0. Empirically the average growth rate is 1.32... in comparison to 1.618... (golden ratio).
a(n)^(1/n) tends to 1.228... - Vaclav Kotesovec, Jan 01 2020
EXAMPLE
a(1) = 1; a(2) = 1; a(3) = 1/gcd(1,2) + 1/gcd(1,1) = 2; a(4) = 2/gcd(2,3) + 1/gcd(1,2) = 3 and so on.
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1] / GCD[a[n - 1], n - 1] + a[n - 2] / GCD[a[n - 2], n - 2]; Array[a, 100] (* Amiram Eldar, Jan 01 2020 *)
PROG
(Magma) a:=[1, 1]; for n in [3..60] do Append(~a, a[n-1]/ Gcd(a[n-1], n-1) + a[n-2] / Gcd(a[n-2], n-2)); end for; a; // Marius A. Burtea, Jan 01 2020
(PARI) seq(n)={my(a=vector(n)); a[1]=a[2]=1; for(n=3, #a, a[n] = a[n-1]/gcd(a[n-1], n-1) + a[n-2]/gcd(a[n-2], n-2)); a} \\ Andrew Howroyd, Jan 01 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Jan 01 2020
STATUS
approved