|
|
A068508
|
|
a(n) = round((a(n-1) + a(n-2))/a(n-3)) starting with a(1)=a(2)=a(3)=1.
|
|
3
|
|
|
1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
While this sequence has period 8, the unrounded version b(n) = (b(n-1) + b(n-2))/b(n-3) seems to have a quasi-period of about 8.7 for this particular starting point.
Terms of the simple continued fraction of 1198/(sqrt(5368485)-1563). - Paolo P. Lava, Aug 06 2009
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-8).
a(n) = (1/56)*(19*(n mod 8) + 12*((n+1) mod 8) + 12*((n+2) mod 8) - 9*((n+3) mod 8) - 2*((n+4) mod 8) - 2*((n+5) mod 8) + 5*((n+6) mod 8) + 5*((n+7) mod 8)) with n >= 0. - Paolo P. Lava, Nov 27 2006
|
|
EXAMPLE
|
a(7) = round((a(6) + a(5))/a(4)) = round((5+3)/2) = 4.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|