login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330775
Irregular triangle read by rows: row n gives the primes of the form m*prime(n)+1 where m is an even number <= prime(n) and prime(n) is the n-th prime, or 0 if no such prime exists for any n.
1
5, 7, 11, 29, 43, 23, 67, 89, 53, 79, 131, 157, 103, 137, 239, 191, 229, 47, 139, 277, 461, 59, 233, 349, 523, 311, 373, 683, 149, 223, 593, 1259, 83, 739, 821, 1231, 1559, 173, 431, 947, 1033, 1291, 1549, 1721, 283, 659, 941, 1129, 1223, 1693, 1787, 2069, 107, 743, 1061, 1697, 2333
OFFSET
1,1
COMMENTS
All safe primes are in this sequence.
Conjecture: For every prime p, there is at least one even m <= p such that m*p+1 is prime; this implies that no row is empty and there is no "0" in the sequence.
Conjecture: For every prime p, there is always a positive integer k <= p such that k*p+m is prime for any odd integer m, 0 < m < p. For example, for p = 11, k*11+m is prime for pairs {k,m}: {2,1}, {4,3}, {6,5}, {2,7}, {2,9}. - Metin Sariyar, Jan 26 2021
LINKS
Metin Sariyar, Rows n = 1..220
FORMULA
T(n, 1) = A035095(n) for n > 1. - Michel Marcus, Jan 02 2020
EXAMPLE
For n = 4, m = {4, 6}, prime(4) = 7, and 4*7+1 = 29, 6*7+1 = 43 are primes.
Rows of the triangle:
n=1 => {5}
n=2 => {7}
n=3 => {11}
n=4 => {29, 43}
n=5 => {23, 67, 89}
n=6 => {53, 79, 131, 157}
n=7 => {103, 137, 239}
n=8 => {191, 229}
n=9 => {47, 139, 277, 461}
...
MATHEMATICA
row[n_] := Select[2 * Range[Floor[(p = Prime[n])/2]] * p + 1, PrimeQ]; row /@ Range[16] //Flatten (* Amiram Eldar, Jan 02 2020 *)
PROG
(PARI) row(n) = select(x->isprime(x), vector(prime(n)\2, k, 2*k*prime(n)+1)); \\ Michel Marcus, Feb 05 2020
CROSSREFS
Cf. A005384 (Sophie Germain primes), A005385 (safe primes), A035095.
Sequence in context: A057247 A157437 A213677 * A340750 A375096 A031134
KEYWORD
nonn,tabf
AUTHOR
Metin Sariyar, Dec 30 2019
STATUS
approved