login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of (phi^phi - 1/phi)/2, where phi = (1 + sqrt(5))/2 = A001622.
0

%I #51 Jul 01 2023 15:18:57

%S 7,8,0,2,1,1,7,8,9,5,9,3,8,5,2,1,4,9,5,8,3,9,7,9,4,3,4,2,5,2,8,0,3,8,

%T 6,7,0,4,3,3,6,7,0,6,0,9,4,3,7,4,5,8,7,4,6,0,6,1,6,6,6,5,0,6,7,1,0,8,

%U 9,9,9,3,3,5,6,9,6,1,8,7,6,1,9,9,9,0,4,7,7,8,5,0,4,1,3,9,7,2,5,0,8

%N Decimal expansion of (phi^phi - 1/phi)/2, where phi = (1 + sqrt(5))/2 = A001622.

%C Conjecture: (phi^phi - 1/phi)/2 = integral_{x=0..oo} exp(-x*(2 + phi)) * (cosh(x) + sqrt(5) * sinh(x))^phi dx.

%H Alexander R. Povolotsky, <a href="https://groups.google.com/forum/#!topic/sci.math.research/AfEAu7rpcY8">Interesting Integral</a>, post in newsgroup sci.math.research, April 04, 2017.

%e 0.78021178959385214958397943425280386704336706094374587460616665067108999335696...

%t RealDigits[(GoldenRatio^GoldenRatio - 1/GoldenRatio)/2, 10, 120][[1]]

%o (Magma) (((Sqrt(5)+1)/2)^((Sqrt(5)+1)/2) - 1/((Sqrt(5)+1)/2))/2

%Y Cf. A001622 (golden ratio phi).

%K nonn,cons

%O 1,1

%A _Vincenzo Librandi_, Dec 29 2019