Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Apr 19 2024 03:29:14
%S 1,10,19,55,64,145,154,254,290,371,380,704,713,794,875,1100,1109,1433,
%T 1442,1766,1847,1928,1937,2837,2873,2954,3054,3378,3387,4116,4125,
%U 4566,4647,4728,4809,6105,6114,6195,6276,7176,7185,7914,7923,8247,8571,8652,8661,10686,10722,11046,11127,11451,11460,12360
%N Partial sums of A097988 (d_3(n)^2).
%C This and the following sequences (and continuing in A331071) were inspired by the papers of Hooley, Indlekofer, Motohashi, Redmond, Titchmarsh, etc.
%H Seiichi Manyama, <a href="/A330570/b330570.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..5000 from Vincenzo Librandi)
%H V. C. Harris and M. V. Subbarao, <a href="https://doi.org/10.1216/RMJ-1985-15-2-399">On the divisor sum function</a>, The Rocky Mountain Journal of Mathematics, Vol. 15, No. 2 (1985), pp 399-412; <a href="https://www.jstor.org/stable/44236923">alternative link</a>.
%H C. Hooley, <a href="https://doi.org/10.1112/plms/s3-7.1.396">An Asymptotic Formula in the Theory of Numbers</a>, Proceedings of the London Mathematical Society, Volume s3-7, Issue 1, 1957, Pages 396-413.
%H Karl-Heinz Indlekofer, <a href="https://doi.org/10.1007/BF01304942">Eine asymptotische Formel in der Zahlentheorie</a> (German), Arch. Math. (Basel) 23 (1972), 619-624. MR0318080 (47 #6629).
%H Yoichi Motohashi, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1633.pdf">An asymptotic formula in the theory of numbers</a>, Acta Arith. 16 (1969/70), 255-264. MR0266884 (42 #1786).
%H Don Redmond, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002313499">An asymptotic formula in the theory of numbers</a>, Math. Ann. 224 (1976), no. 3, 247-268. MR0419386 (54 #7407).
%H E. C. Titchmarsh, <a href="https://doi.org/10.1093/qmath/os-13.1.129">Some problems in the analytic theory of numbers</a>, The Quarterly Journal of Mathematics 1 (1942): 129-152.
%F a(n) ~ c * n * log(n)^8 /8!, where c = Product_{p prime} ((1-1/p)^4 * (1 + 4/p + 1/p^2)) = 0.049321673579400091761... (Titchmarsh, 1942). - _Amiram Eldar_, Apr 19 2024
%t Accumulate[a[n_]:=DivisorSum[n, DivisorSigma[0, #]&]^2; Array[a, 60]] (* _Vincenzo Librandi_, Jan 11 2020 *)
%o (PARI) lista(nmax) = {my(s = 0); for(n = 1, nmax, s += vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[,2]))^2; print1(s, ", "));} \\ _Amiram Eldar_, Apr 19 2024
%Y Cf. A007425, A097988.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Jan 08 2020