The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330541 Triangle read by rows: T(n,k) = gcd {x^n - x^k : x is an integer}, 0 < k < n. 3
 2, 6, 2, 2, 12, 2, 30, 2, 24, 2, 2, 60, 2, 24, 2, 42, 2, 120, 2, 24, 2, 2, 252, 2, 240, 2, 24, 2, 30, 2, 504, 2, 240, 2, 24, 2, 2, 60, 2, 504, 2, 240, 2, 24, 2, 66, 2, 120, 2, 504, 2, 240, 2, 24, 2, 2, 132, 2, 240, 2, 504, 2, 240, 2, 24, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS All diagonals are weakly increasing, T(n,k) divides T(n+1,k+1), and the m-th diagonal converges to A079612(m). First column is A027760. First value where T(n,k) < gcd(2^n - 2^k, 3^n - 3^k) is T(12,1) = 2 < 46. Maximum value in the n-th row is given by A330542(n). LINKS Peter Kagey, Table of n, a(n) for n = 2..10012 (first 141 rows, flattened) Math Stack Exchange, Computing gcd {n^k - n^l : n in Z} EXAMPLE Table begins:   n\k|  1    2    3    4    5    6    7    8   9  10 11   ---+-------------------------------------------------    2 |  2;    3 |  6,   2;    4 |  2,  12,   2;    5 | 30,   2,  24,   2;    6 |  2,  60,   2,  24,   2;    7 | 42,   2, 120,   2,  24,   2;    8 |  2, 252,   2, 240,   2,  24,   2;    9 | 30,   2, 504,   2, 240,   2,  24,   2;   10 |  2,  60,   2, 504,   2, 240,   2,  24,  2;   11 | 66,   2, 120,   2, 504,   2, 240,   2, 24,  2;   12 |  2, 132,   2, 240,   2, 504,   2, 240,  2, 24, 2. CROSSREFS Cf. A027760, A079612, A330542. Sequence in context: A062539 A064136 A171898 * A320575 A110218 A316259 Adjacent sequences:  A330538 A330539 A330540 * A330542 A330543 A330544 KEYWORD nonn,tabl AUTHOR Peter Kagey, Dec 17 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 18:26 EDT 2021. Contains 343920 sequences. (Running on oeis4.)