login
A330317
a(n) = Sum_{i=0..n} r(i)*r(i+1), where r(n) = A004018(n) is the number of ways of writing n as a sum of two squares.
3
4, 20, 20, 20, 52, 52, 52, 52, 68, 100, 100, 100, 100, 100, 100, 100, 132, 164, 164, 164, 164, 164, 164, 164, 164, 260, 260, 260, 260, 260, 260, 260, 260, 260, 260, 260, 292, 292, 292, 292, 356, 356, 356, 356, 356, 356, 356, 356, 356, 404, 404, 404, 468, 468, 468, 468, 468, 468, 468, 468, 468, 468, 468, 468, 532, 532, 532
OFFSET
0,1
REFERENCES
H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
LINKS
Fernando Chamizo, Correlated sums of r(n), J. Math. Soc. Japan, 51(1):237-252, 1999.
Fernando Chamizo, and Roberto J. Miatello, Sums of squares in real quadratic fields and Hilbert modular groups, arXiv preprint arXiv:1812.10725 [math.NT], 2018.
CROSSREFS
Partial sums of A330315.
Sequence in context: A131745 A261755 A288319 * A151727 A146568 A087326
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 2019
STATUS
approved