login
A330183
a(n) = n + floor(ns/r) + floor(nt/r), where r = sqrt(2) - 1/2, s = sqrt(2), t = sqrt(2) + 1/2.
2
4, 9, 13, 18, 22, 27, 31, 36, 40, 45, 51, 55, 60, 64, 69, 73, 78, 82, 87, 91, 96, 102, 106, 111, 115, 120, 124, 129, 133, 138, 142, 148, 153, 157, 162, 166, 171, 175, 180, 184, 189, 193, 199, 204, 208, 213, 217, 222, 226, 231, 235, 240, 244, 250, 255, 259
OFFSET
1,1
COMMENTS
This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n)=n+[ns/r]+[nt/r],
b(n)=n+[nr/s]+[nt/s],
c(n)=n+[nr/t]+[ns/t], where []=floor.
Taking r = sqrt(2) - 1/2, s = sqrt(2), t = sqrt(2) + 1/2 yields
FORMULA
a(n) = n + floor(ns/r) + floor(nt/r), where r = sqrt(2) - 1/2, s = sqrt(2), t = sqrt(2) + 1/2.
MATHEMATICA
r = Sqrt[2] - 1/2; s = Sqrt[2]; t = Sqrt[2] + 1/2;
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t]
Table[a[n], {n, 1, 120}] (* A330183 *)
Table[b[n], {n, 1, 120}] (* A016789 *)
Table[c[n], {n, 1, 120}] (* A330184 *)
CROSSREFS
Sequence in context: A312930 A312931 A312932 * A312933 A206908 A330179
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 05 2020
STATUS
approved