The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330115 Beatty sequence for e^x, where 1/e^x + csch(x) = 1. 3
 3, 6, 9, 12, 16, 19, 22, 25, 28, 32, 35, 38, 41, 45, 48, 51, 54, 57, 61, 64, 67, 70, 73, 77, 80, 83, 86, 90, 93, 96, 99, 102, 106, 109, 112, 115, 118, 122, 125, 128, 131, 135, 138, 141, 144, 147, 151, 154, 157, 160, 163, 167, 170, 173, 176, 180, 183, 186 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let x be the positive solution of 1/e^x + csch(x) = 1. Then (floor(n e^x) and (floor(n sinh(x))) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825. LINKS Eric Weisstein's World of Mathematics, Beatty Sequence. FORMULA a(n) = floor(n e^x), where x = 1.1676157... is the constant in A330115. MATHEMATICA r = x /. FindRoot[1/E^x + Csch[x] == 1, {x, 1, 2}, WorkingPrecision -> 200] RealDigits[r][] (* A330114 *) Table[Floor[n*E^r], {n, 1, 250}]  (* A330115 *) Table[Floor[n*Sinh[r]], {n, 1, 250}]  (* A330116 *) CROSSREFS Cf. A329825, A330114, A330116 (complement). Sequence in context: A310151 A310152 A189783 * A189513 A194146 A276854 Adjacent sequences:  A330112 A330113 A330114 * A330116 A330117 A330118 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jan 04 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 19:29 EDT 2020. Contains 336298 sequences. (Running on oeis4.)