|
|
A330016
|
|
a(n) = Sum_{k=1..n} (-1)^(n - k) * H(k) * k!, where H(k) is the k-th harmonic number.
|
|
0
|
|
|
0, 1, 2, 9, 41, 233, 1531, 11537, 98047, 928529, 9700111, 110843729, 1375599151, 18427159889, 265038487471, 4074124514129, 66660157879471, 1156745432699729, 21220242625821871, 410344904191816529, 8342603132569783471, 177902207647600456529, 3970574571687854263471
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..22.
|
|
FORMULA
|
a(n) = Sum_{k=1..n} (-1)^(n - k) * |Stirling1(k+1,2)|.
|
|
MATHEMATICA
|
Table[Sum[(-1)^(n - k) HarmonicNumber[k] k!, {k, 1, n}], {n, 0, 22}]
|
|
CROSSREFS
|
Cf. A000254, A001008, A002805, A092692, A097422.
Sequence in context: A152052 A192661 A020038 * A056845 A162273 A289684
Adjacent sequences: A330013 A330014 A330015 * A330017 A330018 A330019
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Nov 27 2019
|
|
STATUS
|
approved
|
|
|
|