login
A329998
Decimal expansion of the solution of 1/sqrt(x-1) + 1/sqrt(x+1) = 1.
3
4, 1, 8, 1, 1, 2, 5, 4, 4, 5, 2, 9, 2, 6, 7, 4, 3, 0, 0, 5, 4, 4, 5, 8, 2, 5, 6, 0, 2, 1, 1, 8, 9, 8, 0, 8, 0, 6, 0, 8, 5, 6, 6, 3, 6, 3, 0, 8, 9, 7, 2, 1, 1, 5, 2, 5, 6, 7, 8, 2, 0, 7, 6, 9, 6, 6, 9, 9, 7, 5, 2, 6, 2, 4, 4, 2, 6, 9, 6, 2, 6, 1, 3, 8, 4, 9
OFFSET
1,1
FORMULA
x^4 - 4 x^3 - 2 x^2 + 4 x + 5 = 0.
EXAMPLE
x = 4.1811254452926743005445825602118...
MATHEMATICA
r = x /. FindRoot[1/Sqrt[x - 1] + 1/Sqrt[x + 1] == 1, {x, 2, 10}, WorkingPrecision -> 210]
RealDigits[r][[1]] (* A329998 *)
Plot[1/Sqrt[x - 1] + 1/Sqrt[x + 1] - 1, {x, 1, 6}]
CROSSREFS
Sequence in context: A262361 A294791 A084884 * A143320 A089146 A297402
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Jan 03 2020
STATUS
approved