

A329977


Beatty sequence for the number x satisfying 1/x + 1/(log x) = 1.


3



3, 7, 11, 15, 19, 23, 27, 30, 34, 38, 42, 46, 50, 54, 57, 61, 65, 69, 73, 77, 81, 84, 88, 92, 96, 100, 104, 108, 111, 115, 119, 123, 127, 131, 135, 138, 142, 146, 150, 154, 158, 162, 165, 169, 173, 177, 181, 185, 189, 192
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Let x be the real solution of 1/x + 1/(log x) = 1. Then (floor(n x)) and (floor(n*(log(x)))) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.


LINKS



FORMULA

a(n) = floor(n x), where x = 3.8573348... is the constant in A236229.


MATHEMATICA

r = x /. FindRoot[1/x + 1/Log[x] == 1, {x, 3, 4}, WorkingPrecision > 210];
Table[Floor[n*r], {n, 1, 50}]; (* A329977 *)
Table[Floor[n*Log[r]], {n, 1, 50}]; (* A329978 *)


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



