The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329977 Beatty sequence for the number x satisfying 1/x + 1/(log x) = 1. 3
3, 7, 11, 15, 19, 23, 27, 30, 34, 38, 42, 46, 50, 54, 57, 61, 65, 69, 73, 77, 81, 84, 88, 92, 96, 100, 104, 108, 111, 115, 119, 123, 127, 131, 135, 138, 142, 146, 150, 154, 158, 162, 165, 169, 173, 177, 181, 185, 189, 192 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Let x be the real solution of 1/x + 1/(log x) = 1. Then (floor(n x)) and (floor(n*(log(x)))) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
LINKS
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = floor(n x), where x = 3.8573348... is the constant in A236229.
MATHEMATICA
r = x /. FindRoot[1/x + 1/Log[x] == 1, {x, 3, 4}, WorkingPrecision -> 210];
RealDigits[r][[1]]; (* A236229 *)
Table[Floor[n*r], {n, 1, 50}]; (* A329977 *)
Table[Floor[n*Log[r]], {n, 1, 50}]; (* A329978 *)
CROSSREFS
Cf. A329825, A236229, A329978 (complement).
Sequence in context: A249244 A059554 A329840 * A246171 A184422 A254311
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 02 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 17:01 EDT 2024. Contains 373391 sequences. (Running on oeis4.)