login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A051903(n) mod A002322(n), where A051903 gives the maximal prime exponent of n, and A002322 is Carmichael's lambda (also known as psi).
3

%I #13 Dec 11 2019 09:51:40

%S 0,0,1,0,1,1,1,1,2,1,1,0,1,1,1,0,1,2,1,2,1,1,1,1,2,1,3,2,1,1,1,5,1,1,

%T 1,2,1,1,1,3,1,1,1,2,2,1,1,0,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,6,1,1,1,2,

%U 1,1,1,3,1,1,2,2,1,1,1,0,4,1,1,2,1,1,1,3,1,2,1,2,1,1,1,5,1,2,2,2,1,1,1,3,1

%N a(n) = A051903(n) mod A002322(n), where A051903 gives the maximal prime exponent of n, and A002322 is Carmichael's lambda (also known as psi).

%C This differs from A051903 at n = 2, 4, 8, 12, 16, 24, 48, 80, 240. Are there any other such n? (None other found <= 201326592.)

%H Antti Karttunen, <a href="/A329885/b329885.txt">Table of n, a(n) for n = 1..65537</a>

%o (PARI)

%o A002322(n) = lcm(znstar(n)[2]); \\ From A002322

%o A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));

%o A329885(n) = (A051903(n)%A002322(n));

%Y Cf. A002322, A051903, A327295.

%K nonn

%O 1,9

%A _Antti Karttunen_, Dec 11 2019