|
|
A329880
|
|
Numbers k such that the sums of unitary and nonunitary divisors of k have the same set of prime divisors.
|
|
1
|
|
|
24, 40, 56, 76, 88, 104, 108, 116, 120, 136, 152, 168, 184, 228, 232, 236, 248, 261, 264, 280, 296, 312, 316, 328, 342, 344, 348, 356, 376, 380, 408, 424, 436, 440, 456, 472, 488, 520, 522, 531, 532, 536, 540, 552, 556, 568, 580, 584, 596, 616, 632, 664, 680
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k such that rad(usigma(k)) = rad(nusigma(k)), where rad(k) is the squarefree kernel of k (A007947), usigma(k) is the sum of unitary divisors of k (A034448) and nusigma(k) = sigma(k) - usigma(k) is the sum of nonunitary divisors of k (A048146).
Numbers k such that rad(usigma(k)) = rad(nusigma(k)) = rad(k) are 24, 3780, 26460, ... with no other term below 3*10^9.
|
|
LINKS
|
|
|
MATHEMATICA
|
rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[700], rad[usigma[#]] == rad[nusigma[#]] &]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|