login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A092261.
2

%I #12 May 19 2020 03:28:34

%S 1,4,8,9,15,27,35,36,37,55,67,71,85,109,133,134,152,155,175,181,213,

%T 249,273,277,278,320,321,329,359,431,463,464,512,566,614,615,653,713,

%U 769,775,817,913,957,969,975,1047,1095,1099,1100,1103,1175,1189,1243

%N Partial sums of A092261.

%D Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50.

%H Amiram Eldar, <a href="/A329728/b329728.txt">Table of n, a(n) for n = 1..10000</a>

%H Eckford Cohen, <a href="http://dx.doi.org/10.1007/BF01180473">Arithmetical functions associated with the unitary divisors of an integer</a>, Mathematische Zeitschrift, Vol. 74, No. 1 (1960), pp. 66-80.

%H Steven R. Finch, <a href="/A007947/a007947.pdf">Unitarism and Infinitarism</a>, February 25, 2004. [Cached copy, with permission of the author]

%H Vaclav Kotesovec, <a href="/A329728/a329728.jpg">Plot of a(n)/n^2 for n = 1..1000000</a>

%F Lim_{n->oo} a(n)/n^2 = 1/2 * Product_{p prime}(1 - 1/(p^2*(p+1))) = 1/2 * A065465.

%t Accumulate[Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 53}]] (* after _Michael De Vlieger_ at A092261 *)

%Y Cf. A065465, A092261.

%K nonn

%O 1,2

%A _Amiram Eldar_, Nov 19 2019