login
a(n) = 3*A006519(n)/2 + n/2 where A006519(n) is the highest power of 2 dividing n.
1

%I #18 Jul 10 2022 16:11:23

%S 2,4,3,8,4,6,5,16,6,8,7,12,8,10,9,32,10,12,11,16,12,14,13,24,14,16,15,

%T 20,16,18,17,64,18,20,19,24,20,22,21,32,22,24,23,28,24,26,25,48,26,28,

%U 27,32,28,30,29,40,30,32,31,36,32,34,33,128,34,36,35,40

%N a(n) = 3*A006519(n)/2 + n/2 where A006519(n) is the highest power of 2 dividing n.

%C A combination of sequences A006519 (highest power of 2 dividing n) and A003602 (Kimberling's paraphrases).

%H Michael De Vlieger, <a href="/A329486/b329486.txt">Table of n, a(n) for n = 1..10000</a>

%t Array[3*2^(IntegerExponent[#, 2] - 1) + #/2 &, 68] (* _Michael De Vlieger_, Jul 10 2022 *)

%o (PARI) a(n) = (3*2^valuation(n, 2) + n)/2; \\ _Michel Marcus_, Mar 03 2020

%o (Python)

%o def A329486(n): return (3*(n&-n)+n)>>1 # _Chai Wah Wu_, Jul 10 2022

%Y Cf. A006519, A003602.

%K nonn

%O 1,1

%A _Markus Rissanen_, Nov 14 2019

%E Edited and more terms from _Michel Marcus_, Mar 03 2020