login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The least significant nonzero digit in the primorial base expansion of primorial inflation of n, A108951(n).
14

%I #32 Jan 17 2020 23:37:24

%S 1,1,1,2,1,2,1,1,1,2,1,4,1,2,6,2,1,2,1,4,6,2,1,3,2,2,1,4,1,5,1,1,6,2,

%T 8,4,1,2,6,1,1,1,1,4,1,2,1,1,1,4,6,4,1,2,4,8,6,2,1,3,1,2,3,2,13,12,1,

%U 4,6,5,1,3,1,2,5,4,2,12,1,2,1,2,1,2,11,2,6,8,1,2,6,4,6,2,7,2,1,2,10,1,1,12,1,8,4

%N The least significant nonzero digit in the primorial base expansion of primorial inflation of n, A108951(n).

%C Number of occurrences of the least primorial present in the greedy sum of primorials adding to A108951(n).

%C The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation.

%H Antti Karttunen, <a href="/A329348/b329348.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F a(n) = A067029(A324886(n)) = A276088(A108951(n)).

%F a(n) <= A324888(n).

%F From _Antti Karttunen_, Jan 15-17 2020: (Start)

%F a(n) = A331188(n) mod A117366(n).

%F a(n) = A001511(A246277(A324886(n))).

%F (End)

%e For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the least primorial in the sum is 3, we have a(24) = 3.

%o (PARI)

%o A034386(n) = prod(i=1, primepi(n), prime(i));

%o A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951

%o A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); };

%o A329348(n) = A276088(A108951(n));

%o (PARI)

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o A324886(n) = A276086(A108951(n));

%o A067029(n) = if(1==n, 0, factor(n)[1, 2]); \\ From A067029

%o A329348(n) = A067029(A324886(n));

%o (PARI)

%o A002110(n) = prod(i=1, n, prime(i));

%o A329348(n) = if(1==n, n, my(f=factor(n), p=nextprime(1+vecmax(f[, 1]))); prod(i=1, #f~, A002110(primepi(f[i, 1]))^(f[i, 2]-(#f~==i)))%p); \\ _Antti Karttunen_, Jan 15 2020

%Y Cf. A002110, A034386, A067029, A108951, A117366, A276086, A276088, A324886, A324888, A329040, A329345, A329343, A329344, A329349, A331188, A331289, A331290, A331291.

%Y Cf. also A331292 (the next digit to left of this one), A331293.

%K nonn

%O 1,4

%A _Antti Karttunen_, Nov 11 2019

%E Name changed by _Antti Karttunen_, Jan 17 2020