login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329229
Numbers that are the product of two odd prime powers with Euler phi-functions having solely a single 2 as a common prime factor.
2
15, 21, 33, 35, 39, 45, 51, 55, 57, 69, 75, 77, 87, 93, 95, 99, 111, 115, 119, 123, 129, 135, 141, 143, 147, 153, 155, 159, 161, 175, 177, 183, 187, 201, 203, 207, 209, 213, 215, 219, 225, 235, 237, 245, 249, 253, 261, 267, 287, 291, 295, 297, 299, 303, 309, 319
OFFSET
1,1
COMMENTS
Numbers p^j*q^k, denoted "cyclic semiprimes", such that gcd(phi(p^j), phi(q^k)) = 2, p and q odd primes, j and k positive integers (Brändli and Beyne, 2016, def.4 and Lee et al., 2013, theo.1).
The products of twin primes (A037074), and odd composite numbers with a single pes-sequence, i.e. parameter B = 1, are a subset of this sequence (Schick 2003, eq.1.6.2).
Any element x in Zs* is said to be a "semi-primitive root", if the order of x modulo s is phi(s)/2, where phi(s) is the Euler phi-function (Lee 2013, def.1).
If s is a cyclic semiprime, x is a generating element and k an integer, then the following reduced modulus denoted mod* returns all elements of Zs* in the interval ]0,s/2[, with mod* defined by x^k mod* s = min(+-x^k mod s) (Lee et al., 2018, def.2.3).
Trivially, the number of cyclic semiprimes of the form 3*p is infinite.
REFERENCES
Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Selbstverlag, Zürich, 2003, ISBN 3-9522917-0-6. See p. 15.
LINKS
Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half The Amount of Residues, arXiv:1504.02757v2 [math.NT], 7 Feb 2016. See p. 10.
Ki-Suk Lee, Miyeon Kwon and GiCheon Shin, Multiplicative Groups of Integers with Semi-primitive Roots Modulo n, Commun. Korean Math. Soc., Vol. 28, No. 1 (2013), pp. 71-77.
Ki-Suk Lee, Ji-Eun Lee, Gerold Brändli and Tim Beyne, Galois Polynomials from Quotient Groups, Journal Chungcheong Math. Soc., Vol. 31, No. 3 (2018), pp. 309-319. See p. 311.
MAPLE
with(NumberTheory, Totient, PrimitiveRoot, Divisors, tau, phi, lambda); K := {}; for i from 3 by 2 to 100 do for j from i+2 by 2 to 100 do if numelems(ifactors(i*j)[2]) = 2 and gcd(phi(i), phi(j)) = 2 and gcd(i, j) = 1 then K := K union {i*j} end if end do end do; print(K)
MATHEMATICA
Select[Range[5, 320, 2], (f = FactorInteger[#]; Length[f] == 2 && GCD[ EulerPhi[ f[[1, 1]]^f[[1, 2]]], EulerPhi[f[[2, 1]]^f[[2, 2]]]] == 2) &] (* Giovanni Resta, Dec 01 2019 *)
CROSSREFS
Bisection of A062373 (odd indices).
Cf. A037074.
Sequence in context: A061346 A098905 A225375 * A146166 A024556 A046388
KEYWORD
nonn
AUTHOR
Gerold Brändli, Nov 08 2019
EXTENSIONS
More terms from Giovanni Resta, Dec 01 2019
STATUS
approved