login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329225 a(n) is the smallest number k such that Sum_{i=1..k} Kronecker(prime(i),prime(n)) > 0 (or equivalently, Sum_{i=1..k} Kronecker(prime(i),prime(n)) = 1), or 0 if no such k exists. 1
732722, 23338590792, 102091236, 1, 3, 314, 1, 5, 1, 128, 1, 5, 1, 16, 1, 7, 3, 3, 38, 1, 1, 1, 5, 1, 1, 9, 1, 9, 3, 1, 1, 3, 1, 5, 11, 1, 7, 1760, 1, 15, 3, 3, 1, 1, 15, 1, 17, 1, 5, 3, 1, 1, 1, 3, 1, 1, 15, 1, 9, 1, 25, 70, 27, 1, 1, 19, 35, 1, 19, 3, 1, 1, 1, 7, 41, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) is the index in primes of A329224(n), or 0 if A329224(n) = 0.
In general, assuming the strong form of RH, if 0 < a, b < k, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod n, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not, where Pi(k,b)(n) is the number of primes <= n that are congruent to b modulo k. This phenomenon is called "Chebyshev's bias". This sequence gives the indices of the smallest primes q to violate the inequality Sum_{primes r <= q} Kronecker(q,p) <= 0, p = prime(n).
LINKS
Wikipedia, Chebyshev's bias
EXAMPLE
For prime(10) = 29, k = 128 is the first case such that Sum_{i=1..k} Kronecker(prime(i),29) = 1 > 0, so a(10) = 128.
PROG
(PARI) a(n) = if(n==2, 23338590792, if(n==3, 102091236, my(p=prime(n), i=0); forprime(q=2, oo, i+=kronecker(q, p); if(i>0, return(primepi(q))))))
CROSSREFS
Cf. A306502, A306503. See A329224 for the actual primes.
Sequence in context: A156867 A156868 A238297 * A236901 A107447 A184504
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 08 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 21:22 EDT 2024. Contains 371767 sequences. (Running on oeis4.)