login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329224
a(n) is the smallest prime q such that Sum_{primes r <= q} Kronecker(r,prime(n)) > 0 (or equivalently, Sum_{primes r <= q} Kronecker(r,prime(n)) = 1), or 0 if no such prime exists.
2
11100143, 608981813029, 2082927221, 2, 5, 2083, 2, 11, 2, 719, 2, 11, 2, 53, 2, 17, 5, 5, 163, 2, 2, 2, 11, 2, 2, 23, 2, 23, 5, 2, 2, 5, 2, 11, 31, 2, 17, 15073, 2, 47, 5, 5, 2, 2, 47, 2, 59, 2, 11, 5, 2, 2, 2, 5, 2, 2, 47, 2, 23, 2, 97, 349, 103, 2, 2, 67, 149, 2, 67
OFFSET
1,1
COMMENTS
In general, assuming the strong form of RH, if 0 < a, b < k, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod n, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not, where Pi(k,b)(n) is the number of primes <= n that are congruent to b modulo k. This phenomenon is called "Chebyshev's bias". This sequence gives the smallest primes q to violate the inequality Sum_{primes r <= q} Kronecker(q,p) <= 0, p = prime(n).
EXAMPLE
For prime(6) = 13, q = 2083 is the first case such that Sum_{primes r <= q} Kronecker(r,13) = 1 > 0, so a(6) = 2083.
PROG
(PARI) a(n) = if(n==2, 608981813029, if(n==3, 2082927221, my(p=prime(n), i=0); forprime(q=2, oo, i+=kronecker(q, p); if(i>0, return(q)))))
CROSSREFS
Cf. A306499, A306500, A329225 (indices of these primes).
Sequence in context: A298704 A308079 A114680 * A274834 A094326 A108717
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 08 2019
STATUS
approved