login
A329007
a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320.
3
1, 9, 21, 405, 2511, 5103, 92583, 557685, 372519, 20135709, 120873303, 241805655, 4353033231, 26119793709, 52241181741, 940355620245, 5642176768191, 3761465527701, 203119525916343, 1218718317759525, 2437437797780517, 43873890820402509, 263243376303474663
OFFSET
1,2
COMMENTS
a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).
EXAMPLE
See Example in A327320.
MATHEMATICA
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327320 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329005 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329006 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329007 *)
(* Peter J. C. Moses, Nov 01 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 08 2019
STATUS
approved