login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328970
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j) / (1 - x^prime(j)) is zero.
0
2, 3, 9, 11, 12, 14, 17, 18, 19, 20, 28, 44, 47, 51, 52, 55, 56, 58, 59, 62, 64, 65, 69, 80, 81, 82, 83, 87, 91, 92, 94, 96, 99, 105, 106, 107, 113, 118, 119, 126, 127, 131, 147, 155, 157, 160, 161, 162, 164, 178, 179, 180, 215, 218, 224, 227, 257, 259, 269, 295
OFFSET
1,1
COMMENTS
Numbers k such that number of partitions of k into an even number of distinct nonprime parts equals number of partitions of k into an odd number of distinct nonprime parts.
Positions of 0's in A302234.
MATHEMATICA
a[j_] := a[j] = If[j == 0, 1, -Sum[Sum[Boole[!PrimeQ[d]] d, {d, Divisors[k]}] a[j - k], {k, 1, j}]/j]; Select[Range[300], a[#] == 0 &]
Flatten[Position[nmax = 300; Rest[CoefficientList[Series[Product[(1 - x^j)/(1 - x^Prime[j]), {j, 1, nmax}], {x, 0, nmax}], x]], 0]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 01 2019
STATUS
approved