Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #119 Jun 27 2021 03:41:42
%S 1,0,0,2,2,1,4,6,6
%N Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.
%C From _Andrew Howroyd_, Nov 08 2019: (Start)
%C A diagonal Latin square of order n is an n X n array with every integer from 0 to n-1 in every row, every column, and both main diagonals.
%C Of course if even one example exists, then a(n) >= 1.
%C A274806 gives the number of diagonal Latin squares and A274806(6) is nonzero. This suggests that although it is not possible to have a pair of orthogonal diagonal Latin squares, a(6) should be 1 here. (End)
%C a(1) = 1 because there is only one (trivial) diagonal Latin square of order 1. It is orthogonal to itself, so if we allow the consideration of multiple copies of the same diagonal Latin square, we get a(1) = infinity instead.
%C From _Eduard I. Vatutin_, Mar 27 2021: (Start)
%C a(n) <= A287695(n) + 1.
%C a(p) >= A123565(p) = p-3 for all odd prime p due to existance of clique from cyclic MODLS of order p with at least A123565(p) items. It seems that for some orders p clique from cyclic MODLS can be extended by adding none cyclic DLS that are orthogonal to all cyclic DLS. (End)
%C a(9) >= 6. - _Eduard I. Vatutin_, Oct 29 2019
%C a(n) <= A001438(n). - _Max Alekseyev_, Nov 08 2019
%C a(10) >= 2; a(11) >= 8; a(12) >= 2; a(13) >= 10; a(14) >= 2; a(15) >= 4. - _Natalia Makarova_, Sep 03 2020
%C Conjecture: a(9) = 6. - _Natalia Makarova_, Dec 24 2020
%C a(16) >= 14, a(17) >= 14, a(18) >= 2, a(19) >= 16, a(20) >= 2. - _Natalia Makarova_, Jan 08 2021
%C a(12) >= 4. - _Natalia Makarova_, May 30 2021
%H R. J. R. Abel, Charles J. Colbourn, and Jeffrey H. Dinitz, <a href="https://www.researchgate.net/publication/329786731_Mutually_orthogonal_latin_squares_MOLS">Mutually Orthogonal Latin Squares (MOLS)</a> [Note the first author, Julian Abel, has the initials R. J. R. A. - _N. J. A. Sloane_, Nov 05 2020]
%H B. Du, <a href="https://ajc.maths.uq.edu.au/pdf/7/ocr-ajc-v7-p87.pdf">New Bounds For Pairwise Orthogonal Diagonal Latin Squares</a>, Australasian Journal of Combinatorics 7 (1993), pp.87-99.
%H Natalia Makarova, <a href="https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=115">MODLS of order 15</a>
%H Natalia Makarova, <a href="https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=117">Complete MOLS systems</a>
%H Natalia Makarova, <a href="http://www.natalimak1.narod.ru/diagon.htm">Orthogonal Diagonal Latin squares</a>
%H Natalia Makarova, <a href="/A328873/a328873.txt">Mutually Orthogonal Diagonal Latin squares (MODLS) for orders 9 - 20</a>
%H Natalia Makarova, <a href="https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=120">MOLS and MODLS of order 12</a>
%H E. I. Vatutin, <a href="https://vk.com/wall162891802_980">Discussion about properties of diagonal Latin squares</a> (in Russian), Oct 29 2019.
%H Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1492">On the falsity of Makarova's proof that a(9) = 6</a> (in Russian).
%H Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1497">About the cliques from orthogonal diagonal Latin squares of order 9, brute force based proof that a(9) = 6</a> (in Russian).
%H E. I. Vatutin, M. O. Manzuk, V. S. Titov, S. E. Kochemazov, A. D. Belyshev, N. N. Nikitina, <a href="http://evatutin.narod.ru/evatutin_ls_all_structs_n1to8_art.pdf">Orthogonality-based classification of diagonal latin squares of orders 1-8</a>, High-performance computing systems and technologies. Vol. 3. No. 1. 2019. pp. 94-100. (in Russian).
%H E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, O. S. Zaikin, A. D. Belyshev, <a href="http://evatutin.narod.ru/evatutin_dls_cliques_properties.pdf">Cliques properties from diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2019). Tula, 2019. pp. 17-23. (in Russian).
%H Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1576">About the A328873(N)-1 <= A287695(N) inequality between the maximum cardinality of clique and the maximum number of orthogonal normalized mates for one diagonal Latin square</a> (in Russian).
%H Eduard I. Vatutin, <a href="/A328873/a328873_2.txt">Proving list (best known examples)</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Clique_problem">Clique problem</a>.
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e Orthogonal pair of Diagonal Latin squares of order 18:
%e 1 5 15 16 17 18 2 14 4 13 3 7 12 10 8 6 11 9
%e 8 2 6 15 16 17 18 1 5 14 4 13 11 9 7 12 10 3
%e 14 9 3 7 15 16 17 2 6 1 5 12 10 8 13 11 4 18
%e 13 1 10 4 8 15 16 3 7 2 6 11 9 14 12 5 18 17
%e 12 14 2 11 5 9 15 4 8 3 7 10 1 13 6 18 17 16
%e 11 13 1 3 12 6 10 5 9 4 8 2 14 7 18 17 16 15
%e 3 12 14 2 4 13 7 6 10 5 9 1 8 18 17 16 15 11
%e 9 10 11 12 13 14 1 15 16 17 18 8 7 6 5 4 3 2
%e 6 7 8 9 10 11 12 18 17 16 15 5 4 3 2 1 14 13
%e 5 6 7 8 9 10 11 16 15 18 17 4 3 2 1 14 13 12
%e 7 8 9 10 11 12 13 17 18 15 16 6 5 4 3 2 1 14
%e 4 15 16 17 18 1 8 13 3 12 2 14 6 11 9 7 5 10
%e 15 16 17 18 14 7 9 12 2 11 1 3 13 5 10 8 6 4
%e 16 17 18 13 6 8 3 11 1 10 14 15 2 12 4 9 7 5
%e 17 18 12 5 7 2 4 10 14 9 13 16 15 1 11 3 8 6
%e 18 11 4 6 1 3 5 9 13 8 12 17 16 15 14 10 2 7
%e 10 3 5 14 2 4 6 8 12 7 11 18 17 16 15 13 9 1
%e 2 4 13 1 3 5 14 7 11 6 10 9 18 17 16 15 12 8
%e and
%e 1 8 14 13 12 11 3 9 6 5 7 4 15 16 17 18 10 2
%e 5 2 9 1 14 13 12 10 7 6 8 15 16 17 18 11 3 4
%e 15 6 3 10 2 1 14 11 8 7 9 16 17 18 12 4 5 13
%e 16 15 7 4 11 3 2 12 9 8 10 17 18 13 5 6 14 1
%e 17 16 15 8 5 12 4 13 10 9 11 18 14 6 7 1 2 3
%e 18 17 16 15 9 6 13 14 11 10 12 1 7 8 2 3 4 5
%e 2 18 17 16 15 10 7 1 12 11 13 8 9 3 4 5 6 14
%e 14 1 2 3 4 5 6 15 16 17 18 13 12 11 10 9 8 7
%e 4 5 6 7 8 9 10 17 18 15 16 3 2 1 14 13 12 11
%e 13 14 1 2 3 4 5 18 17 16 15 12 11 10 9 8 7 6
%e 3 4 5 6 7 8 9 16 15 18 17 2 1 14 13 12 11 10
%e 7 13 12 11 10 2 1 8 5 4 6 14 3 15 16 17 18 9
%e 12 11 10 9 1 14 8 7 4 3 5 6 13 2 15 16 17 18
%e 10 9 8 14 13 7 18 6 3 2 4 11 5 12 1 15 16 17
%e 8 7 13 12 6 18 17 5 2 1 3 9 10 4 11 14 15 16
%e 6 12 11 5 18 17 16 4 1 14 2 7 8 9 3 10 13 15
%e 11 10 4 18 17 16 15 3 14 13 1 5 6 7 8 2 9 12
%e 9 3 18 17 16 15 11 2 13 12 14 10 4 5 6 7 1 8
%e so a(18) >= 2.
%Y Cf. A001438, A274806, A287695.
%K nonn,more,hard
%O 1,4
%A _Eduard I. Vatutin_, Oct 29 2019
%E a(6) corrected by _Max Alekseyev_ and _Andrew Howroyd_, Nov 08 2019
%E a(9) added by _Eduard I. Vatutin_, Feb 02 2021