login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328833
A276085 applied to the intersection of A048103 (p^p-free numbers) and A276156 (sums of distinct primorials).
3
0, 1, 2, 3, 30, 4, 9, 6469693230, 212, 200560490130, 510511, 2312, 39, 7799922041683461553249199106329813876687996789903550945093032474868511536164700810, 7858321551080267055879092, 6469693260, 2566376117594999414479597815340071648394471, 557940830126698960967415392, 1062411448280052319722448549835623701226301211611796930357321893850294264731624591303255041960530, 421, 7420738134813, 512820, 3217644767340672907899084554132, 249
OFFSET
1,3
FORMULA
a(n) = A276085(A328832(n)).
PROG
(PARI)
A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
A328828(n) = { my(i=1, p=2); while(n, if((n%p)>1, return(i)); i++; n = n\p; p = nextprime(1+p)); (0); };
isA328832(n) = ((0==A129251(n)) && (0==A328828(n)));
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
for(n=1, 32768, if(isA328832(n), print1(A276085(n), ", ")));
CROSSREFS
Cf. A328836 (same terms, sorted into ascending order).
Cf. A328313 (a subsequence).
Sequence in context: A270550 A366477 A076977 * A109886 A277811 A127615
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 30 2019
STATUS
approved