OFFSET
1,1
COMMENTS
The first term that occurs for two different triples (p,q,r) is 791, which corresponds to (p,q,r) = (3,5,97) and (3,17,37).
The first term that occurs for three different triples (p,q,r) is 66135, which corresponds to (p,q,r) = (11,71,797), (17,29,1427) and (17,59,857).
All terms == 3 (mod 4).
If p <> 3, then p,q,r are all congruent mod 6 so k is divisible by 3.
If 5 is not p or q, then two of (p,q,r) are congruent to each other mod 10.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3) = 151 is in the sequence because (p,q,r)=(3,7,13) are distinct primes such that p*q+p*r+q*r=151 and 2*151-p*q=281, 2*151-p*r=263 and 2*151-q*r=211 are primes.
MAPLE
N:= 4000: # to get all terms <= N
filter:= proc(p, q, r)
isprime(p*q+2*p*r+2*q*r) and isprime(2*p*q+p*r+2*q*r) and isprime(2*p*q+2*p*r+q*r)
end proc:
Primes:= select(isprime, [seq(i, i=3..N/8, 2)]):
R:= {}:
for ip from 1 do
p:= Primes[ip];
if 3*p^2 >= N then break fi;
for iq from ip+1 do
q:= Primes[iq];
if 2*p*q + q^2 >= N then break fi;
for ir from iq+1 do
r:= Primes[ir];
s:= p*q + q*r + p*r;
if s > N then break fi;
if filter(p, q, r) then
R:= R union {s};
fi;
od od od:
sort(convert(R, list));
MATHEMATICA
M = 4000; (* to get all terms <= M *)
filterQ[p_, q_, r_] := PrimeQ[p q + 2 p r + 2 q r] && PrimeQ[2 p q + p r + 2 q r] && PrimeQ[2 p q + 2 p r + q r];
primes = Select[Table[i, {i, 3, M/8, 2}], PrimeQ];
R = {};
For[ip = 1, True, ip++, p = primes[[ip]]; If[3 p^2 >= M, Break[]]; For[iq = ip + 1, True, iq++, q = primes[[iq]]; If[2 p q + q^2 >= M, Break[]]; For[ir = iq + 1, True, ir++, r = primes[[ir]]; s = p q + q r + p r; If[s > M, Break[]]; If[filterQ[p, q, r], R = Union[R, {s}]]]]];
R (* Jean-François Alcover, Jul 31 2020, after Robert Israel *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 27 2019
STATUS
approved