login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{n>=1} sigma(n) * x^n, where sigma = A000203.
2

%I #4 Oct 28 2019 20:05:53

%S 1,3,1,3,-3,2,-1,4,3,-8,-1,6,3,-4,-7,12,1,-6,7,0,-13,-13,27,13,-19,

%T -11,11,-21,-25,191,-81,-300,89,327,325,-745,-275,579,-255,1287,-453,

%U -2075,-583,2142,5985,-6698,-6661,6981,3045,3857,-7205,-2784,-5447,-4891,48547

%N Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{n>=1} sigma(n) * x^n, where sigma = A000203.

%C Inverse weigh transform of A000203.

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = DivisorSigma[1, n] - b[n, n - 1]; Array[a, 55]

%Y Cf. A000203, A192065, A320780.

%K sign

%O 1,2

%A _Ilya Gutkovskiy_, Oct 27 2019