login
A328614
Number of 1-digits in primorial base expansion of n.
6
0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2
OFFSET
0,4
FORMULA
a(n) = A056169(A276086(n)).
a(n) = A267263(n) - A328615(n).
For n >= 1, a(A143293(n-1)) = n. [This is the first occurrence of each n]
EXAMPLE
In primorial base (A049345), 87 is written as "2411" because 87 = 2*A002110(3) + 4*A002110(2) + 1*A002110(1) + 1*A002110(0) = 2*30 + 4*6 + 1*2 + 1*1. Only two of these digits are "1"'s, thus a(87) = 2.
MATHEMATICA
a[n_] := Module[{k = n, p = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, If[r == 1, s++]; p = NextPrime[p]]; s]; Array[a, 100, 0] (* Amiram Eldar, Mar 13 2024 *)
PROG
(PARI) A328614(n) = { my(s=0, p=2); while(n, s += (1==(n%p)); n = n\p; p = nextprime(1+p)); (s); };
CROSSREFS
Cf. A143293 (positions of records after initial zero).
Cf. also A257511.
Sequence in context: A089614 A064875 A216657 * A257511 A039802 A126726
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Oct 22 2019
STATUS
approved