login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A328578(n) - A257993(n).
7

%I #6 Oct 21 2019 19:27:32

%S 0,1,0,2,0,0,0,2,0,3,0,-1,0,3,0,2,0,0,0,4,0,4,0,-1,0,4,0,5,0,-2,0,2,0,

%T 1,0,0,0,3,0,4,0,-1,0,4,0,4,0,0,0,5,0,5,0,-1,0,5,0,3,0,-2,0,3,0,2,0,0,

%U 0,4,0,4,0,-1,0,5,0,5,0,0,0,5,0,6,0,-1,0,4,0,6,0,-2,0,4,0,5,0,0,0,5,0,5,0,-1,0,5,0

%N a(n) = A328578(n) - A257993(n).

%H Antti Karttunen, <a href="/A328590/b328590.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%F a(n) = A328578(n) - A257993(n).

%o (PARI)

%o A257993(n) = { for(i=1,oo,if(n%prime(i),return(i))); }

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o A328578(n) = A257993(A276086(A276086(n)));

%o A328590(n) = (A328578(n) - A257993(n));

%Y Cf. A257993, A276086, A328578, A328585 (positions of zeros), A328587 (of negative terms), A328588 (of positive terms).

%Y Cf. A328591 (even bisection).

%K sign

%O 1,4

%A _Antti Karttunen_, Oct 21 2019