OFFSET
0,1
COMMENTS
The function df(x) = 2^(x/2)*(2/Pi)^(sin(Pi*x/2)^2/2)*Gamma(x/2+1) interpolates the double factorials A006882 and extends them analytically. df(-1/2) is the given constant. Extending also the notation this can be written as (-1/2)!! = (-1/4)!/Pi^(1/4).
LINKS
Jean-Paul Allouche, Samin Riasat, and Jeffrey Shallit, More infinite products: Thue-Morse and the Gamma function, The Ramanujan Journal, Vol. 49 (2019), pp. 115-128; arXiv preprint, arXiv:1709.03398 [math.NT], 2017.
FORMULA
Equals (-1/4)!/Pi^(1/4).
From Amiram Eldar, Feb 04 2024: (Start)
Equals Pi^(3/4)*sqrt(2)/Gamma(1/4).
Equals Product_{k>=0} ((4*k+1)*(4*k+4)/((4*k+2)*(4*k+3)))^A010060(k) (Allouche et al., 2019). (End)
EXAMPLE
0.92044178783559098393491713074999098122949892...
MAPLE
Digits := 100: GAMMA(3/4)/Pi^(1/4)*10^86:
ListTools:-Reverse(convert(floor(%), base, 10));
MATHEMATICA
RealDigits[Gamma[3/4]/Surd[Pi, 4], 10, 120][[1]] (* Harvey P. Dale, Jun 13 2020 *)
PROG
(PARI) gamma(3/4)/Pi^(1/4) \\ Michel Marcus, Oct 24 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Oct 24 2019
STATUS
approved