Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 28 2022 08:13:07
%S 1,2,2,11,14,47,305,611,2070,8831,84077,204371,944333,3850407,
%T 23991739,297448526,927586630,4775902567,24534836837,141681919871,
%U 1080484165089,18553632475991,66762080435239,415657332495526,2298883231736949,15799818116227747
%N Row sums of A327869.
%H Alois P. Heinz, <a href="/A327870/b327870.txt">Table of n, a(n) for n = 0..500</a>
%p b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
%p `if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
%p `if`(i=k, 0, b(n-i, min(n-i, i-1), k)*binomial(n, i))))
%p end:
%p a:= n-> b(n$2, 0)*(n+1) -add(b(n$2, k), k=1..n):
%p seq(a(n), n=0..28);
%t b[n_, i_, k_] := b[n, i, k] = If[i*(i + 1)/2 < n, 0,
%t If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] +
%t If[i == k, 0, b[n - i, Min[n - i, i - 1], k]*Binomial[n, i]]]];
%t a[n_] := b[n, n, 0]*(n + 1) - Sum[b[n, n, k], {k, 1, n}];
%t Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Mar 28 2022, after _Alois P. Heinz_ *)
%Y Row sums of A327869.
%Y Cf. A320566.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Sep 28 2019