Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Jun 23 2024 21:42:56
%S 1,2,1,1,1,1,5,1,3,6,1,1,1,1,3,2,1,1,1,1,3,10,1,1,1,10,15,3,1,1,1,1,1,
%T 14,1,6,5,1,21,2,1,1,1,1,3,3,25,1,7,14,15,10,7,1,1,2,1,2,1,1,1,1,3,3,
%U 3,18,1,1,3,2,1,1,1,1,3,5,5,18,1,1,1,6,1,1,1,2,15,2,35,1,1,2,3,2,49,6,1,1,7,15,35,1,7,1,1,1
%N Greatest common divisor of the arithmetic derivative and the primorial base exp-function: a(n) = gcd(A003415(n), A276086(n)).
%C Sequence contains only terms of A048103.
%C Proof that A046337 gives the positions of even terms: see _Charlie Neder_'s Feb 25 2019 comment in A235992 and recall that A276086 is never a multiple of 4, as it is a permutation of A048103, and furthermore it toggles the parity. See also comment in A327860. - _Antti Karttunen_, May 01 2022
%H Antti Karttunen, <a href="/A327858/b327858.txt">Table of n, a(n) for n = 0..65537</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F a(n) = gcd(A003415(n), A276086(n)).
%F a(p) = 1 for all primes p.
%F a(n) = A276086(A351234(n)). - _Antti Karttunen_, May 01 2022
%F From _Antti Karttunen_, Dec 05 2022: (Start)
%F For n >= 2, a(n) = gcd(A003415(n), A328382(n)).
%F (End)
%F For n >= 2, a(n) = A358669(n) / A359423(n). For n >= 1, A356299(n) | a(n). - _Antti Karttunen_, Jan 09 2023
%F a(n) = gcd(A003415(n), A373849(n)) = gcd(A276086(n), A369971(n)) = A373843(A276086(n)). - _Antti Karttunen_, Jun 21 & 23 2024
%t Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12], f, g}, f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; g[n_] := Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[n, b]; Array[GCD[f@ #, g@ #] &, 105]] (* _Michael De Vlieger_, Sep 30 2019 *)
%o (PARI)
%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A327858(n) = gcd(A003415(n),A276086(n));
%Y Cf. A003415, A048103, A235992, A276086, A327859, A328382, A351234, A354348, A356299, A358669, A359423, A359589 (Dirichlet inverse of a(n)-1), A369971, A373849.
%Y Cf. A046337 (positions of even terms), A356311 (positions of 1's), A356310 (their characteristic function).
%Y Cf. also A085731, A324198, A328572 [= gcd(A276086(n), A327860(n))], A345000, A373145, A373843.
%K nonn,base,easy
%O 0,2
%A _Antti Karttunen_, Sep 30 2019
%E Verbal description added to the definition by _Antti Karttunen_, May 01 2022