login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327745
Expansion of Product_{i>=1, j>=1} (1 + x^(i*j*(j + 1)/2)).
3
1, 1, 1, 3, 3, 4, 8, 9, 11, 19, 23, 28, 42, 51, 62, 89, 108, 130, 178, 215, 260, 344, 413, 496, 639, 766, 916, 1155, 1380, 1641, 2040, 2426, 2870, 3520, 4166, 4912, 5960, 7023, 8246, 9911, 11634, 13610, 16224, 18972, 22111, 26183, 30507, 35430, 41698
OFFSET
0,4
COMMENTS
Weigh transform of A007862.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^A007862(k).
MATHEMATICA
nmax = 48; CoefficientList[Series[Product[(1 + x^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Length[Select[Divisors[d], IntegerQ[Sqrt[8 # + 1]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
nmax = 50; CoefficientList[Series[Product[QPochhammer[-1, x^(k*(k + 1)/2)]/2, {k, 1, Sqrt[2*nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 23 2019
STATUS
approved