login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327738 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j^2)). 2
1, 1, 2, 4, 9, 18, 37, 76, 158, 326, 672, 1386, 2862, 5906, 12187, 25148, 51900, 107103, 221023, 456110, 941256, 1942423, 4008481, 8272094, 17070712, 35227975, 72698206, 150023632, 309596255, 638898274, 1318462339, 2720844607, 5614870612, 11587126980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Invert transform of A046951.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^(k^2))).

G.f.: 1 / (1 - Sum_{k>=1} (theta_3(x^k) - 1) / 2), where theta_() is the Jacobi theta function.

a(0) = 1; a(n) = Sum_{k=1..n} A046951(k) * a(n-k).

MAPLE

a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*

      nops(select(issqr, numtheory[divisors](i))), i=1..n))

    end:

seq(a(n), n=0..35);  # Alois P. Heinz, Sep 23 2019

MATHEMATICA

nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]

a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

CROSSREFS

Cf. A004101, A046951, A129921, A280451.

Sequence in context: A019299 A052932 A018097 * A215253 A079580 A327739

Adjacent sequences:  A327735 A327736 A327737 * A327739 A327740 A327741

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Sep 23 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 15:58 EDT 2022. Contains 356943 sequences. (Running on oeis4.)