Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 30 2019 11:59:32
%S 0,0,0,1,6,37,182,876,3920,17175,73030,306296,1266916,5198207,
%T 21180642,85909216,347179440,1399443775,5629876910,22616222616,
%U 90754709276,363889980927,1458171985402,5840531023856,23385647663560,93613189390175,374664530448390
%N Number of length n reversible string structures that are not palindromic using exactly four different colors.
%H Andrew Howroyd, <a href="/A327611/b327611.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (8,-10,-60,145,100,-470,120,456,-288).
%F a(n) = A056328(n) - A000453(ceiling(n/2), 4).
%F a(n) = 8*a(n-1) - 10*a(n-2) - 60*a(n-3) + 145*a(n-4) + 100*a(n-5) - 470*a(n-6) + 120*a(n-7) + 456*a(n-8) - 288*a(n-9) for n > 9.
%F G.f.: x^4*(1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)).
%o (PARI) concat([0,0,0], Vec((1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)) + O(x^30))) \\ _Andrew Howroyd_, Sep 18 2019
%Y Column k=4 of A309748.
%Y Cf. A000453, A056328, A284949, A327610.
%K nonn,easy
%O 1,5
%A _Andrew Howroyd_, Sep 18 2019