login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327611
Number of length n reversible string structures that are not palindromic using exactly four different colors.
3
0, 0, 0, 1, 6, 37, 182, 876, 3920, 17175, 73030, 306296, 1266916, 5198207, 21180642, 85909216, 347179440, 1399443775, 5629876910, 22616222616, 90754709276, 363889980927, 1458171985402, 5840531023856, 23385647663560, 93613189390175, 374664530448390
OFFSET
1,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (8,-10,-60,145,100,-470,120,456,-288).
FORMULA
a(n) = A056328(n) - A000453(ceiling(n/2), 4).
a(n) = 8*a(n-1) - 10*a(n-2) - 60*a(n-3) + 145*a(n-4) + 100*a(n-5) - 470*a(n-6) + 120*a(n-7) + 456*a(n-8) - 288*a(n-9) for n > 9.
G.f.: x^4*(1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)).
PROG
(PARI) concat([0, 0, 0], Vec((1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)) + O(x^30))) \\ Andrew Howroyd, Sep 18 2019
CROSSREFS
Column k=4 of A309748.
Sequence in context: A338708 A129552 A293800 * A056338 A056328 A156185
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Sep 18 2019
STATUS
approved