OFFSET
1,1
COMMENTS
Delta = pqr + 2uvw - pu^2 - qv^2 - rw^2 for the general conic section px^2 + qy^2 + rz^2 + 2uyz + 2vxz + 2wxy = 0.
Perfect squares of this form are quite rare, representing approximately 0.0048% of possible Delta values using consecutive prime number coefficients. (First 4 million primes tested.)
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 192 terms from Philip Mizzi)
EXAMPLE
48 = sqrt(2304) = pqr + 2uvw - pu^2 - qv^2 - rw^2 for (p,q,r,u,v,w) = (440653,440669,440677,440681,440683,440711), which are consecutive primes. Hence, 440653 is a member of the sequence.
MATHEMATICA
f[{p_, q_, r_, u_, v_, w_}] := p q r + 2 u v w - p u^2 - q v^2 - r w^2; First /@ Select[Partition[ Prime@ Range@ 300000, 6, 1], IntegerQ@ Sqrt@ f@ # &] (* Giovanni Resta, Sep 30 2019 *)
PROG
(PARI) chk(nn) = {forprime (p=1, nn, my(q = nextprime(p+1), r = nextprime(q+1), u = nextprime(r+1), v = nextprime(u+1), w = nextprime(v+1)); if (issquare(p*q*r + 2*u*v*w - p*u^2 - q*v^2 - r*w^2), print1(p, ", ")); ); } \\ Michel Marcus, Sep 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Philip Mizzi, Sep 18 2019
STATUS
approved