login
A327590
Number of partitions in all twice partitions of n.
2
0, 1, 4, 10, 29, 63, 164, 339, 797, 1640, 3578, 7139, 15210, 29621, 60381, 117116, 232523, 442388, 863069, 1621560, 3105993, 5785525, 10894394, 20083143, 37434186, 68344449, 125774280, 228088127, 415668548, 747660318, 1351364816, 2413792653, 4327245170
OFFSET
0,3
LINKS
EXAMPLE
a(3) = 10 = 1+1+1+2+2+3 counting the partitions in 3, 21, 111, 2|1, 11|1, 1|1|1.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1)+
(p-> p+[0, p[1]])(combinat[numbpart](i)*b(n-i, min(n-i, i)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..42);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][PartitionsP[i] b[n-i, Min[n-i, i]]]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 42] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 17 2019
STATUS
approved