login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327588
Total number of colors in all colored compositions of n using all colors of an initial interval of the color palette such that all parts have different color patterns and the patterns for parts i have i colors in (weakly) increasing order.
2
0, 1, 7, 62, 642, 7784, 108824, 1725072, 30605384, 601213744, 12958778704, 304145108160, 7722286425312, 210920029636224, 6166996162239840, 192199468584942816, 6360760834966301120, 222782888877269937664, 8233066075880951824000, 320162458265691237967360
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * A327245(n,k).
MAPLE
C:= binomial:
b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k+i-1, i), j), j=0..n/i)))
end:
a:= n-> add(k*add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
seq(a(n), n=0..21);
MATHEMATICA
c = Binomial;
b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[
b[n - i*j, Min[n-i*j, i-1], k, p+j]*c[c[k+i-1, i], j], {j, 0, n/i}]]];
a[n_] := Sum[k*Sum[b[n, n, i, 0]*(-1)^(k-i)*c[k, i], {i, 0, k}], {k, 0, n}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 11 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A327245.
Sequence in context: A180776 A353099 A024089 * A287481 A289212 A060005
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 17 2019
STATUS
approved