login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327554
Number of partitions in all twice partitions of n where the second partition is strict.
4
0, 1, 3, 7, 15, 29, 60, 108, 201, 364, 643, 1106, 1944, 3253, 5493, 9183, 15161, 24727, 40559, 65173, 104963, 167747, 266452, 420329, 663658, 1036765, 1618221, 2514169, 3891121, 5992868, 9224213, 14107699, 21548428, 32798065, 49779331, 75301296, 113757367
OFFSET
0,3
LINKS
EXAMPLE
a(3) = 7 = 1+1+2+3 counting the partitions in 3, 21, 2|1, 1|1|1.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
b(n, i-1) +(p-> p+[0, p[1]])(g(i)*b(n-i, min(n-i, i)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..42);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + Function[p, p + {0, p[[1]]}][g[i] b[n - i, Min[n - i, i]]]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 16 2019
STATUS
approved