The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327554 Number of partitions in all twice partitions of n where the second partition is strict. 4
 0, 1, 3, 7, 15, 29, 60, 108, 201, 364, 643, 1106, 1944, 3253, 5493, 9183, 15161, 24727, 40559, 65173, 104963, 167747, 266452, 420329, 663658, 1036765, 1618221, 2514169, 3891121, 5992868, 9224213, 14107699, 21548428, 32798065, 49779331, 75301296, 113757367 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..4000 EXAMPLE a(3) = 7 = 1+1+2+3 counting the partitions in 3, 21, 2|1, 1|1|1. MAPLE g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)     end: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,       b(n, i-1) +(p-> p+[0, p[1]])(g(i)*b(n-i, min(n-i, i)))))     end: a:= n-> b(n\$2)[2]: seq(a(n), n=0..42); MATHEMATICA g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + Function[p, p + {0, p[[1]]}][g[i] b[n - i, Min[n - i, i]]]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *) CROSSREFS Cf. A000009, A000041, A270995, A327608. Sequence in context: A283258 A080011 A284022 * A120538 A146019 A284421 Adjacent sequences:  A327551 A327552 A327553 * A327555 A327556 A327557 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 02:41 EST 2021. Contains 349344 sequences. (Running on oeis4.)