The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327553 Number of partitions in all twice partitions of n where both partitions are strict. 4
 0, 1, 1, 4, 6, 11, 20, 33, 57, 100, 165, 254, 417, 649, 1039, 1648, 2540, 3836, 6020, 9035, 13645, 20752, 31054, 45993, 68668, 101511, 149525, 220132, 321614, 468031, 684124, 989703, 1427054, 2064859, 2964987, 4254028, 6090453, 8686574, 12366583, 17598885 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..5000 EXAMPLE a(3) = 4 = 1+1+2 counting the partitions in 3, 21, 2|1. MAPLE g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)     end: b:= proc(n, i) option remember; `if`(i*(i+1)/2 p+[0, p[1]])(        g(i)*b(n-i, min(n-i, i-1)))))     end: a:= n-> b(n\$2)[2]: seq(a(n), n=0..42); MATHEMATICA g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, {0, 0}, If[n==0, {1, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][g[i] b[n-i, Min[n-i, i-1]]]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *) CROSSREFS Cf. A000009, A279785, A327605. Sequence in context: A047811 A244010 A154145 * A302428 A336142 A091280 Adjacent sequences:  A327550 A327551 A327552 * A327554 A327555 A327556 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 23:44 EST 2022. Contains 350481 sequences. (Running on oeis4.)