Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Sep 20 2019 08:58:23
%S 1,1,2,1,3,1,2,1,1,5,2,1,4,1,2,2,7,1,1,1,1,4,2,1,7,1,2,1,4,1,5,1,11,2,
%T 2,1,2,1,2,1,7,1,1,1,4,2,1,1,1,12,2,4,1,2,7,2,1,1,10,1,1,2,15,5,1,4,2,
%U 5,1,1,1,1,1,2,4,2,1,1,12,1,2,1,1,2,2
%N Number of factorizations of A302696(n), the n-th number that is 1, 2, or a nonprime number with pairwise coprime prime indices, into factors > 1 satisfying the same conditions.
%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a>
%e The a(59) = 10 factorizations of 120 using the allowed factors, together with the corresponding multiset partitions of {1,1,1,2,3}:
%e (2*2*2*15) {{1},{1},{1},{2,3}}
%e (2*2*30) {{1},{1},{1,2,3}}
%e (2*4*15) {{1},{1,1},{2,3}}
%e (2*6*10) {{1},{1,2},{1,3}}
%e (2*60) {{1},{1,1,2,3}}
%e (4*30) {{1,1},{1,2,3}}
%e (6*20) {{1,2},{1,1,3}}
%e (8*15) {{1,1,1},{2,3}}
%e (10*12) {{1,3},{1,1,2}}
%e (120) {{1,1,1,2,3}}
%t nn=100;
%t facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
%t y=Select[Range[nn],#==1||CoprimeQ@@primeMS[#]&];
%t Table[Length[facsusing[Rest[y],n]],{n,y}]
%Y See link for additional cross-references.
%Y Cf. A001055, A056239, A112798, A302569, A302696, A304711, A305079, A327392.
%K nonn
%O 1,3
%A _Gus Wiseman_, Sep 19 2019