login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327163
Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = gcd(n,usigma(n)) * (-1)^[gcd(n,usigma(n))==n], and usigma is the sum of unitary divisors of n (A034448).
2
1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 5, 2, 4, 6, 2, 2, 7, 2, 8, 2, 4, 2, 9, 2, 4, 2, 5, 2, 7, 2, 2, 6, 4, 2, 4, 2, 4, 2, 4, 2, 7, 2, 5, 10, 4, 2, 5, 2, 4, 6, 4, 2, 7, 2, 11, 2, 4, 2, 12, 2, 4, 2, 2, 2, 7, 2, 4, 6, 4, 2, 13, 2, 4, 2, 5, 2, 7, 2, 4, 2, 4, 2, 5, 2, 4, 6, 5, 2, 14, 15, 5, 2, 4, 16, 9, 2, 4, 6, 8, 2, 7, 2, 4, 6
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of function f, defined as f(n) = -A323166(n) = -n when n is one of unitary multiply-perfect numbers (A327158), otherwise f(n) = A323166(n) = gcd(n,A034448(n))
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j) => A327164(i) = A327164(j).
LINKS
PROG
(PARI)
up_to = 87360;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A323166(n) = gcd(n, A034448(n));
Aux327163(n) = { my(u=A323166(n)); u*((-1)^(u==n)); };
v327163 = rgs_transform(vector(up_to, n, Aux327163(n)));
A327163(n) = v327163[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 28 2019
STATUS
approved