login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326034
Number of knapsack partitions of n with largest part 3.
8
0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2
OFFSET
0,6
COMMENTS
An integer partition is knapsack if every distinct submultiset has a different sum.
Appears to repeat the terms (2,2,2,3,1,3) ad infinitum.
I computed terms a(n) for n = 0..5000 and (2,2,2,3,1,3) is repeated continuously starting at a(8). - Fausto A. C. Cariboni, May 14 2021
EXAMPLE
The initial values count the following partitions:
3: (3)
4: (3,1)
5: (3,2)
5: (3,1,1)
6: (3,3)
7: (3,3,1)
7: (3,2,2)
8: (3,3,2)
8: (3,3,1,1)
9: (3,3,3)
9: (3,2,2,2)
10: (3,3,3,1)
10: (3,3,2,2)
11: (3,3,3,2)
11: (3,3,3,1,1)
11: (3,2,2,2,2)
12: (3,3,3,3)
13: (3,3,3,3,1)
13: (3,3,3,2,2)
13: (3,2,2,2,2,2)
14: (3,3,3,3,2)
14: (3,3,3,3,1,1)
15: (3,3,3,3,3)
15: (3,2,2,2,2,2,2)
MATHEMATICA
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1, ptn, Union@@(Join[sums[#], sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn, i], {i, Length[ptn]}]])];
kst[n_]:=Select[IntegerPartitions[n, All, {1, 2, 3}], Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
Table[Length[Select[kst[n], Max@@#==3&]], {n, 0, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 04 2019
STATUS
approved