login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Terms k of A228058 for which A325814(k) is a multiple of A034460(k).
4

%I #13 Jun 18 2019 07:24:27

%S 477,3725,29161,107797,166753,205409,500837,535277,780625,1610389,

%T 5649841,6968125,10292809,10633429,24231241,32771201,38322857,

%U 40028661,104861501,170384117,183593125,277405641,326081953,488265625,491716541,704531953,797338489,836737393,2053219321,2359421369,3012238153

%N Terms k of A228058 for which A325814(k) is a multiple of A034460(k).

%C Such terms A228058(n) that A325823(n) is a divisor of A325824(n).

%C If any odd perfect number exists, then it must occur in this sequence.

%C This is not a subsequence of A325376: 107797 is the first term that does not occur there.

%H <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a>

%o (PARI)

%o A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448

%o A034460(n) = (A034448(n) - n);

%o A048146(n) = (sigma(n)-A034448(n));

%o A325814(n) = (n-A048146(n));

%o isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));

%o for(n=1,oo, if(isA228058(n) && !(A325814(n)%A034460(n)), print1(n, ", ")));

%Y Cf. A034460, A228058, A325376, A325812, A325814, A325823, A325824.

%K nonn

%O 1,1

%A _Antti Karttunen_, May 23 2019