login
A325627
a(n) is the largest prime factor in A030426(n).
1
2, 5, 13, 89, 233, 1597, 113, 28657, 514229, 2417, 2221, 59369, 433494437, 2971215073, 55945741, 2710260697, 555003497, 1429913, 46165371073, 86020717, 92180471494753, 99194853094755497, 1665088321800481, 361040209, 770857978613, 512119709, 8242065050061761
OFFSET
1,1
LINKS
C. L. Stewart, On Divisors of Fermat, Fibonacci, Lucas, and Lehmer Numbers, Proceedings of the London Mathematical Society, Vol. s3-35, No. 3 (1977), pp. 425-447. See p. 430.
FORMULA
From Amiram Eldar, Oct 25 2024: (Start)
a(n) = A006530(A030426(n)).
a(n) = A060385(prime(n+1)).
a(n) > c * prime(n) * log(prime(n)), where c is an effectively computable positive constant (Stewart, 1977). (End)
MATHEMATICA
Table[FactorInteger[Fibonacci [Prime[n]]][[-1, 1]], {n, 2, 30}]
PROG
(Magma) [Maximum(PrimeDivisors(Fibonacci(NthPrime(n)))): n in [2..35]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, May 13 2019
STATUS
approved