login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325222 E.g.f.: D(x,k) = dn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where D(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, as a triangle of coefficients T(n,j) read by rows. 3
1, 0, 1, 0, 8, 1, 0, 136, 88, 1, 0, 3968, 6240, 816, 1, 0, 176896, 513536, 195216, 7376, 1, 0, 11184128, 51880064, 39572864, 5352544, 66424, 1, 0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1, 0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1, 0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Equals a row reversal of triangle A322231.

Compare to dn(x,k) = 1 - k^2 * Integral sn(x,k)*cn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions.

LINKS

Table of n, a(n) for n=0..54.

FORMULA

E.g.f. D = D(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, along with related series S = S(x,k) and C = C(x,k), satisfies:

(1a) S = Integral C^2*D dx.

(1b) C = 1 + Integral S*C*D dx.

(1c) D = 1 + k^2 * Integral S*C^2 dx.

(2a) C^2 - S^2 = 1.

(2b) D^2 - k^2*S^2 = 1.

(3a) C + S = exp( Integral C*D dx ).

(3b) D + k*S = exp( k * Integral C^2 dx ).

(4a) S = sinh( Integral C*D dx ).

(4b) S = sinh( k * Integral C^2 dx ) / k.

(4c) C = cosh( Integral C*D dx ).

(4d) D = cosh( k * Integral C^2 dx ).

(5a) d/dx S = C^2*D.

(5b) d/dx C = S*C*D.

(5c) d/dx D = k^2 * S*C^2.

Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then

(6a) S = -i * sn( i * Integral C dx, k),

(6b) C = cn( i * Integral C dx, k),

(6c) D = dn( i * Integral C dx, k).

(7a) S = sc( Integral C dx, k') = sn(Integral C dx, k')/cn(Integral C dx, k'),

(7b) C = nc( Integral C dx, k') = 1/cn(Integral C dx, k'),

(7c) D = dc( Integral C dx, k') = dn(Integral C dx, k')/cn(Integral C dx, k').

Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.

Column T(n,n+1) = 2^n*A002105(n+1), for n>=0, where A002105 gives the reduced tangent numbers.

EXAMPLE

E.g.f.: D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...

such that D(x,k) = dn( i * Integral C(x,k) dx, k) where C(x,k) = cn( i * Integral C(x,k) dx, k).

This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. D(x,k) begins:

1;

0, 1;

0, 8, 1;

0, 136, 88, 1;

0, 3968, 6240, 816, 1;

0, 176896, 513536, 195216, 7376, 1;

0, 11184128, 51880064, 39572864, 5352544, 66424, 1;

0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1;

0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1;

0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1; ...

RELATED SERIES.

The related series S(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts

S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...

The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts

C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...

which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).

PROG

(PARI) N=10;

{S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }

{T(n, j) = (2*n)!*polcoeff(polcoeff(D, 2*n, x), 2*j, k)}

for(n=0, N, for(j=0, n, print1( T(n, j), ", ")) ; print(""))

CROSSREFS

Cf. A325220 (S), A325221(C).

Cf. A322231 (row reversal).

Sequence in context: A050466 A095893 A095886 * A076346 A199461 A056191

Adjacent sequences:  A325219 A325220 A325221 * A325223 A325224 A325225

KEYWORD

tabl,nonn

AUTHOR

Paul D. Hanna, Apr 13 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 15:49 EST 2021. Contains 349564 sequences. (Running on oeis4.)