login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325185
Heinz numbers of integer partitions such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.
5
2, 6, 9, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 45, 46, 48, 50, 52, 56, 58, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 110, 112, 114, 116, 117, 118, 120, 122, 124, 125, 126, 130, 132
OFFSET
1,1
COMMENTS
The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. The sequence gives all Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
Eric Weisstein's World of Mathematics, Graph Distance.
EXAMPLE
The sequence of terms together with their prime indices begins:
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
20: {1,1,3}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
34: {1,7}
38: {1,8}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
46: {1,9}
48: {1,1,1,1,2}
MATHEMATICA
hptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&, Append[ptn, 0]];
Select[Range[2, 100], otb[hptn[#]]>otb[Rest[hptn[#]]]&&otb[hptn[#]]>otb[DeleteCases[hptn[#]-1, 0]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 08 2019
STATUS
approved