OFFSET
1,1
COMMENTS
The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. The sequence gives all Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
Eric Weisstein's World of Mathematics, Graph Distance.
Gus Wiseman, Young diagrams for the first 25 terms.
EXAMPLE
The sequence of terms together with their prime indices begins:
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
20: {1,1,3}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
34: {1,7}
38: {1,8}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
46: {1,9}
48: {1,1,1,1,2}
MATHEMATICA
hptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&, Append[ptn, 0]];
Select[Range[2, 100], otb[hptn[#]]>otb[Rest[hptn[#]]]&&otb[hptn[#]]>otb[DeleteCases[hptn[#]-1, 0]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 08 2019
STATUS
approved