login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heinz numbers of integer partitions such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.
5

%I #6 Apr 10 2019 22:01:46

%S 2,6,9,10,12,14,20,22,24,26,28,30,34,38,40,42,44,45,46,48,50,52,56,58,

%T 60,62,63,66,68,70,74,75,76,78,80,82,84,86,88,90,92,94,96,98,99,100,

%U 102,104,106,110,112,114,116,117,118,120,122,124,125,126,130,132

%N Heinz numbers of integer partitions such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.

%C The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. The sequence gives all Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 1.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>.

%H Gus Wiseman, <a href="/A325185/a325185.png">Young diagrams for the first 25 terms</a>.

%e The sequence of terms together with their prime indices begins:

%e 2: {1}

%e 6: {1,2}

%e 9: {2,2}

%e 10: {1,3}

%e 12: {1,1,2}

%e 14: {1,4}

%e 20: {1,1,3}

%e 22: {1,5}

%e 24: {1,1,1,2}

%e 26: {1,6}

%e 28: {1,1,4}

%e 30: {1,2,3}

%e 34: {1,7}

%e 38: {1,8}

%e 40: {1,1,1,3}

%e 42: {1,2,4}

%e 44: {1,1,5}

%e 45: {2,2,3}

%e 46: {1,9}

%e 48: {1,1,1,1,2}

%t hptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];

%t otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];

%t Select[Range[2,100],otb[hptn[#]]>otb[Rest[hptn[#]]]&&otb[hptn[#]]>otb[DeleteCases[hptn[#]-1,0]]&]

%Y Cf. A001222, A056239, A061395, A065770, A112798, A188674.

%Y Cf. A325169, A325183, A325184, A325186, A325187, A325196.

%K nonn

%O 1,1

%A _Gus Wiseman_, Apr 08 2019