OFFSET
0,8
EXAMPLE
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 0, 1, 2, 3, 4, 5, 6, 7, ... A001477
[2] 0, 4, 14, 30, 52, 80, 114, 154, ... A049451
[3] 0, 2, 12, 36, 80, 150, 252, 392, ... A011379
[4] 0, 48, 496, 2064, 5832, 13240, 26088, 46536, ...
[5] 0, 16, 288, 1656, 5920, 16200, 37296, 76048, ...
[6] 0, 576, 18288, 145200, 654816, 2153280, 5775936, 13429248, ...
MAPLE
A := (n, k) -> Stirling2(n + k, k)*A053657(n)*k!/(n + k)!:
seq(seq(A(n - k, k), k=0..n), n=0..10);
MATHEMATICA
a053657[n_] := Product[p^Sum[Floor[(n-1) / ((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}];
A[n_, k_] := StirlingS2[n+k, k] a053657[n+1] k! / (n+k)!;
Table[A[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 22 2019
STATUS
approved