login
A325143
Primes represented by cyclotomic binary forms.
4
3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 73, 79, 89, 97, 101, 103, 109, 113, 127, 137, 139, 149, 151, 157, 163, 173, 181, 193, 197, 199, 211, 223, 229, 233, 241, 257, 269, 271, 277, 281, 283, 293, 307, 313, 317, 331, 337, 349, 353, 367, 373
OFFSET
1,1
COMMENTS
A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is represented by f if f(x, y) = n has an integer solution.
LINKS
Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, Acta Arithmetica 184 (2018), 67-86; arXiv:1712.09019, arXiv:1712.09019 [math.NT], 2017.
PROG
(Julia) using Nemo
function isA325143(n)
(n < 3 || !isprime(ZZ(n))) && return false
R, x = PolynomialRing(ZZ, "x")
K = floor(Int, 5.383*log(n)^1.161) # Bounds from
M = floor(Int, 2*sqrt(n/3)) # Fouvry & Levesque & Waldschmidt
N = QQ(n)
for k in 3:K
e = Int(eulerphi(ZZ(k)))
c = cyclotomic(k, x)
for m in 1:M, j in 0:M if max(j, m) > 1
N == m^e*subst(c, QQ(j, m)) && return true
end end end
return false
end
[n for n in 1:373 if isA325143(n)] |> println
CROSSREFS
Subsequence of A296095. Complement A325145. Number of A325141.
Sequence in context: A123567 A059645 A090190 * A276357 A065041 A065393
KEYWORD
nonn
AUTHOR
Peter Luschny, May 16 2019
STATUS
approved