OFFSET
1,1
COMMENTS
A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is represented by f if f(x, y) = n has an integer solution.
LINKS
Peter Luschny, Table of n, a(n) for n = 1..10000
Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, Acta Arithmetica 184 (2018), 67-86; arXiv:1712.09019, arXiv:1712.09019 [math.NT], 2017.
PROG
(Julia) using Nemo
function isA325143(n)
(n < 3 || !isprime(ZZ(n))) && return false
R, x = PolynomialRing(ZZ, "x")
K = floor(Int, 5.383*log(n)^1.161) # Bounds from
M = floor(Int, 2*sqrt(n/3)) # Fouvry & Levesque & Waldschmidt
N = QQ(n)
for k in 3:K
e = Int(eulerphi(ZZ(k)))
c = cyclotomic(k, x)
for m in 1:M, j in 0:M if max(j, m) > 1
N == m^e*subst(c, QQ(j, m)) && return true
end end end
return false
end
[n for n in 1:373 if isA325143(n)] |> println
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 16 2019
STATUS
approved